计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (20): 233-238.
安葳鹏,孙 贝
AN Weipeng, SUN Bei
摘要: 由于影响瓦斯浓度变化的因素很多且内部关系复杂,传统的单一预测模型无法客观准确地反映其变化规律,导致预测精度较低。为有效提高瓦斯浓度预测精度,提出一种基于分态的预测模型。应用最大李雅普诺夫指数(Lyapunov指数)对瓦斯浓度时间序列的混沌特性进行识别,将其分为非混沌态和混沌态,接着分别采用改进的最小二乘支持向量机(LS-SVM)和基于径向基函数(Radial Basis Function,RBF)的神经网络进行建模和训练参数的优化,最终得到最佳预测模型并对瓦斯浓度时间序列进行预测。结果表明,分态预测模型有效提高了预测精度,降低了预测误差,用该方法可以更加客观准确地对瓦斯浓度进行预测。