计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (2): 88-91.

• 网络、通信、安全 • 上一篇    下一篇

自组织增量神经网络IDS研究

向直扬,朱俊平   

  1. 西北农林科技大学 信息工程学院,陕西 杨凌 712100
  • 出版日期:2014-01-15 发布日期:2014-01-26

Network anomaly detection with improved self-organizing incremental neural network

XIANG Zhiyang, ZHU Junping   

  1. College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Online:2014-01-15 Published:2014-01-26

摘要: 理想的网络入侵检测系统(IDS)是无监督学习的、在线学习的。现有的满足这两个标准的方法训练速度较慢,无法保证入侵检测系统所需要的低丢包率。为了提高训练速度,提出一种基于改进的自组织增量神经网络(improved SOINN)的网络异常检测方法,用于在线地、无监督地训练网络数据分类器;并提出使用三种数据精简(Data Reduction)的方法,包括随机子集选取,k-means聚类和主成分分析的方法,来进一步加速改进的SOINN的训练。实验结果表明,提出的方法在保持较高检测率的前提下,减少了训练时间。

关键词: 异常检测, 在线聚类, 数据精简, 自组织增量神经网络, 最近邻分类器

Abstract: An ideal Intrusion Detection System(IDS) should implement unsupervised learning and online learning. Existing methods suffice these two criterions requires too much training time, which would cause a high packet loss rate and is unacceptable. To overcome the difficulty, an intrusion detection method based on improved Self-Organizing Incremental Neural Network(SOINN) and data reduction is presented, which allows online training of network classifiers in an unsupervised fashion. Also, data reduction methods, including random subset selection, k-means clustering, and principle component analysis are employed to accelerate the training. Experimental results show that the proposed method requires less time in training while maintaining a high detection rate.

Key words: anomaly detection, online clustering, data reduction, Self-Organizing Incremental Neural Network(SOINN), nearest neighbor classifier