计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (19): 187-191.
顾思思
GU Sisi
摘要: 为了提高光照条件下的人脸识别正确率,提出一种复杂光照条件下的人脸预处理算法。对人脸图像进行局部增强处理,用双边滤波对图像亮度进行估计,采用Gamma校正补偿图像亮度估计产生的损失,将反射分量与亮度估计结果融合获得效果更优的人脸图像,并用K近邻算法建立分类器对人脸进行识别。在Yale、PIE和AR人脸库仿真结果表明,该算法提高了光照条件下的人脸识别正确率,其性能优于当前典型人脸识别算法。