计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (19): 178-181.
杨新华1,2,翟逸飞1
YANG Xinhua1,2, ZHAI Yifei1
摘要: 针对传统图像增强方法易损失边缘对比度以及抗噪性不强的缺点提出了一种基于Tetrolet变换与PCNN结合的图像增强方法。对待增强图像分别进行Tetrolet变换,得到不同尺度的高通和低通子带系数,并将分解后的高通子带系数进行软阈值处理;把经处理后的各尺度高通子带轮廓图像序列作为PCNN神经网络增强算子的外部输入,进而得到增强后的高通子带系数;通过Tetrolet反变换获得增强后的结果图像。数值实验结果表明,该增强算法不但能够有效抑制噪声,而且能够很好地增强图像边缘轮廓的清晰度。