计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (18): 50-53.

• 理论研究、研发设计 • 上一篇    下一篇

一类活化基质模型非常数正平衡解的全局结构

魏美华1,常金勇2,马  崛1   

  1. 1.榆林学院 数学与统计学院,陕西 榆林 719000
    2.中国科学院 信息工程研究所,北京 100093
  • 出版日期:2014-09-15 发布日期:2014-09-12

Global structure of nonconstant steady-state solutions for activator-substrate system

WEI Meihua1, CHANG Jinyong2, MA Jue1   

  1. 1.School of Mathematics and Statistics, Yulin University, Yulin, Shaanxi 719000, China
    2.Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
  • Online:2014-09-15 Published:2014-09-12

摘要: 在一维空间上,研究一类带Neumann边界条件的活化基质模型。以扩散系数[d1]为分歧参数,运用分歧理论和度理论研究该模型常数平衡解的局部分歧和全局分歧,利用数值模拟得以证实。理论结果表明非常数平衡解分支延伸向无穷,这是已有工作的继续。

关键词: 活化基质模型, 分歧, 平衡解, 全局结构

Abstract: An activator-substrate system under Neumann boundary condition is considered in one-dimensional space. Taking the diffusion coefficient [d1] as bifurcation parameter, the local and global bifurcation of constant steady-state solution are studied by bifurcation theory and degree theory. Moreover, the theoretical results are confirmed by numerical simulations, and also continue the previous work. It is shown that the nonconstant steady-state branches join up with infinity.

Key words: activator-substrate model, bifurcation, steady-state solutions, global structure