计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (17): 63-67.

• 理论研究、研发设计 • 上一篇    下一篇

比例最小偏度单行采样的平方根UKF-SLAM算法

汪贵冬,陈跃东,陈孟元   

  1. 安徽工程大学 安徽省电气传动与控制重点实验室,安徽 芜湖 241000
  • 出版日期:2014-09-01 发布日期:2014-09-12

UKF-SLAM algorithm adopting square root and single row sampling method based on proportion and mini-skewness

WANG Guidong, CHEN Yuedong, CHEN Mengyuan   

  1. Anhui Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Online:2014-09-01 Published:2014-09-12

摘要: 对于UKF-SLAM算法所存在的滤波增益矩阵计算失真,采用对称采样计算复杂度相对较高且易产生非局部效应等问题,提出基于比例最小偏度单行采样的平方根UKF-SLAM算法。改进后的算法采用协方差阵的平方根代替协方差阵带入迭代运算,并以比例最小偏度单行采样的方式优化采样策略。仿真结果表明,该算法能够有效地提高机器人位姿以及特征地图的估计精度,并降低了计算复杂度,提高算法的稳定性。

关键词: 滤波增益, 采样策略, 平方根, 计算复杂度

Abstract: Due to the distortion of filter gain matrix and high calculation complexity associating with nonlocal effect if symmetric sampling is adopted in the UKF-SLAM algorithm, the UKF-SLAM algorithm adopting square root and single row sampling method based on the proportion and mini-skewness is proposed. The advanced algorithm puts the square root of covariance matrix into iterative computation instead of covariance matrix and adopts the optimized single row sampling strategy based on the proportion and mini-skewness. The experimental results show the algorithm can improve the estimation accuracy of feature map and the pose of robot, besides, that can reduce the complexity and increase stability of the algorithm.

Key words: filter gain, sampling strategy, square root, computational complexity