计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (17): 16-19.

• 博士论坛 • 上一篇    下一篇

改进的人工免疫识别系统及其性能分析

邓泽林1,谭冠政2,何  锫3   

  1. 1.长沙理工大学 计算机与通信工程学院,长沙 410076
    2.中南大学 信息科学与工程学院,长沙 410083
    3.广州大学 计算机科学与教育软件学院,广州 510006
  • 出版日期:2014-09-01 发布日期:2014-09-12

Improved artificial immune recognition system and its performance analysis

DENG Zelin1, TAN Guanzheng2, HE Pei3   

  1. 1.School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410076, China
    2.School of Information Science and Engineering, Central South University, Changsha 410083, China
    3.School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China
  • Online:2014-09-01 Published:2014-09-12

摘要: 为了改善人工免疫识别系统的非线性能力, 进一步优化分类器性能,提出了一种改进的人工免疫识别系统。新算法采用混合核函数来提升算法的非线性能力,同时,对记忆细个体进行适应度评估,淘汰低适应度的细胞来优化免疫分类器。改进的算法被应用于复杂UCI数据集的分类,分类结果与其他经典的分类算法的结果进行比较,结果显示该算法具有更好的分类性能。

关键词: 人工免疫识别系统, 混合核函数, 适应度, 复杂数据

Abstract: In order to improve the nonlinearity of Artificial Immune Recognition System(AIRS) and optimize the classifier, an improved AIRS algorithm is proposed. The new algorithm adopts hybrid kernel function to improve its nonlinearity, moreover, the individual memory cell is evaluated by its fitness score and the cells with low fitness scores are pruned to optimize the classifier. The improved algorithm has been applied to the complex UCI datasets classification, the results have been compared with the results achieved by other classic classifiers. The comparison shows that the algorithm achieves better classification performances.

Key words: artificial immune recognition system, hybrid kernel function, fitness score, complex data