计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (17): 137-141.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

基于相似领域共享特征的分类学习模型

徐俊芬,叶俊杰,刘业政   

  1. 1.合肥工业大学 管理学院,合肥 230009
    2.过程优化与智能决策教育部重点实验室,合肥 230009
  • 出版日期:2014-09-01 发布日期:2014-09-12

Classification model based on common features between similar domains

XU Junfen, YE Junjie, LIU Yezheng   

  1. 1.School of Management, Hefei University of Technology, Hefei 230009, China
    2.Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China
  • Online:2014-09-01 Published:2014-09-12

摘要: 传统上下文在分类研究中通常存在失真和有效性等问题。引入研究对象领域的相似领域作为上下文,借助迁移学习理论,使用结构化相似性学习方法构建研究对象领域和其相似领域间的低维共享特征,提出一种基于相似领域共享特征的分类学习模型。实验以QQ空间的个性化设置数据作为上下文,对用户电子商务网站页面的风格偏好进行分类,验证了所提模型的可行性和有效性。

关键词: 分类, 似领域, 上下文, 共享特征, 特征迁移学习

Abstract: Distortion and low efficiency are two constant problems when employing traditional context in classification problems. Inspired by the transfer learning theory, the paper regards the similar domain of the target domain as context, and constructs the low-dimensional common features between the target domain and its similar domain by structural correspondence learning method. Based on the common features between similar domains, the paper puts forward a new classification model. The experiment employs users’ personalized options of QQ-zone as context to classify users’ preferences of e-commerce web pages, the results verify the feasibility and availability of the proposed model.

Key words: classification, similar domain, context, common feature, feature-based transfer learning