计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (14): 78-81.
陈鸿星
CHEN Hongxing
摘要: 为了提高网络入侵检测正确率,提出一种遗传优化神经网络的网络入侵特征选择和检测算法。该方法先将网络状态特征和RBF神经网络参数作为遗传算法的个体,把检测正确率作为适应度函数;然后利用遗传算法的选择、交叉和变异等操作对网络状态特征和RBF神经网络参数进行优化,最后利用KDD 1999数据集对算法性能进行测试。测试结果表明:遗传优化神经网络能够快速获得最优网络状态特征和分类器参数,同时提高了网络入侵检测正确率。