计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (14): 103-109.
夏 磊1,2,张乐君1,国 林1,张勇实1,张健沛1,杨 静1
XIA Lei1,2, ZHANG Lejun1, GUO Lin1, ZHANG Yongshi1, ZHANG Jianpei1, YANG Jing1
摘要: 近年来,社会网络簇结构挖掘取得了长足的进展,广泛应用在社会网、生物网和万维网等领域中。针对当前研究社会网络簇结构挖掘的热点问题,重点研究基于局部信息的聚类算法,并进行分析总结;对标签传播算法(LPA)进行深入研究与分析,针对该算法中由于随机策略而导致网络划分并非最优的缺陷,引入节点属性相似度的概念,提出LPA-SNA算法;采用美国大学足球赛程网络、科学家合著网络作为数据集,分别实现LPA算法与LPA-SNA算法,并对它们的性能进行比较。实验结果表明LPA-SNA较之原始的LPA算法,提高了网络聚类的质量,优化了聚类效果,同时降低了算法的时间开销,提高了算法聚类速度。