计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (13): 239-242.

• 工程与应用 • 上一篇    下一篇

基于随机梯度的双率系统自校正控制方法

姚  健1,黄言平2,纪志成3   

  1. 1.江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
    2.北京华航无线电测量研究所,北京 100013
    3.江南大学,江苏 无锡 214122
  • 出版日期:2014-07-01 发布日期:2015-05-12

Self-tuning control for dual-rate systems based on stochastic gradient

YAO Jian1, HUANG Yanping2, JI Zhicheng3   

  1. 1.Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Beijing Huahang Institute of Radio and Measurement, Beijing 100013, China
    3.Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2014-07-01 Published:2015-05-12

摘要: 针对输入更新频率是输出刷新频率整数倍的未知参数双率系统,设计一个损失输出估计器计算采样间输出,再根据随机梯度算法设计参数估计器并得到系统模型的估计参数,基于最小方差控制原则设计出双率系统的自适应控制器。通过与基于最小二乘方法辨识系统参数的自适应控制算法进行比较,可以看出该算法的计算量较小,尤其是在输入数据更新频率与输出数据刷新频率相差较大时,计算量的差距更加明显。最后用仿真例子说明了该算法的有效性。

关键词: 自校正控制, 随机梯度算法, 双率系统, 参数估计

Abstract: For parameters unknown dual-rate systems with different input and output updating frequency sampling periods, a missing output estimator is designed to get the inter-sampling output data. By using the measured input-output data and estimated output data, a stochastic gradient algorithm based estimator is proposed to obtain the parameters of plants, and furthermore, a minimum variance based self-tuning controller is designed for pants. Comparing to the computation load of least squares based self-tuning algorithm for dual-rate systems, the new algorithm dominates a certain advantage, especially under a larger multiple circumstances. Finally, simulation example illustrates the efficiency.

Key words: self-tuning control, stochastic gradient algorithm, dual-rate system, parameter estimate