计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (13): 1-5.

• 博士论坛 • 上一篇    下一篇

基于BSN识别双人交互动作方法的研究

陈  野1,王哲龙1,2,武东辉1   

  1. 1.大连理工大学 控制科学与工程学院,辽宁 大连 116024
    2.中国科学院 沈阳自动化研究所 机器人学国家重点实验室,沈阳 110016
  • 出版日期:2014-07-01 发布日期:2015-05-12

Activity recognition of two-body interactions by using BSN

CHEN Ye1, WANG Zhelong1,2, WU Donghui1   

  1. 1.School of Control Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
    2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • Online:2014-07-01 Published:2015-05-12

摘要: 基于体感网对人体动作进行识别的很多研究都是针对单人动作,很少有研究讨论双人交互动作的识别。针对双人交互动作中两人肢体行为的特点,提出了一种隐马尔可夫模型和马尔可夫逻辑网相结合的方法。其中,单人原子行为通过建立隐马尔可夫模型来进行识别,在两人交互行为的语义建模中,建立一阶逻辑知识库,并通过训练马尔可夫逻辑网来最终实现两人交互行为的决策。实验结果表明,与基于特征层数据融合的一些方法相比,该方法获得了更高的识别精度,能够有效地识别出双人交互动作。

关键词: 体感网, 双人交互动作, 隐马尔可夫模型, 数据融合, 一阶逻辑, 马尔可夫逻辑网

Abstract: Existing work in human activity recognition based on Body Sensor Networks(BSN) mainly focuses on recognizing single-user activities and lacks of discussions about two-body interactive activities. A new hierarchical recognition framework which consists of Hidden Markov Model(HMM) and Markov Logic Network(MLN) is proposed according to the characteristics of two-body interactive actions. The primitive actions of a single person are recognized by using Hidden Markov Model, and the final decision of interactive actions is made by constructing first-order logic knowledge base and employing MLN. Experimental results on the interaction dataset show that the proposed method can achieve a higher accuracy compared to other methods in activity recognition of two-body interactions.

Key words: Body Sensor Networks(BSN), two-body interactive activities, Hidden Markov Model(HMM), data fusion, first-order logic, Markov Logic Network(MLC)