计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (12): 115-119.

• 图形图像处理 • 上一篇    下一篇

萤火虫算法优化最大熵的图像分割方法

吴  鹏   

  1. 淄博职业学院,山东 淄博 255314
  • 出版日期:2014-06-15 发布日期:2015-05-08

Image segmentation method based on firefly algorithm and maximum entropy method

WU Peng   

  1. Zibo Vocational Institute, Zibo, Shandong 255314, China
  • Online:2014-06-15 Published:2015-05-08

摘要: 为了提高图像的分割效果,提出一种萤火虫算法优化最大熵的图像分割方法。获得最大熵法的阈值优化目标函数,采用萤火虫算法对目标函数进行求解,找到图像的最佳分割阈值,根据最佳阈值对图像进行分割,通过仿真实验对分割效果进行测试。结果表明,该方法可以迅速、准确找到最佳阈值,提高图像分割的准确度和抗噪性能,可以较好地满足图像分割实时性要求。

关键词: 萤火虫算法, 最大熵法, 阈值, 图像分割

Abstract: In order to improve the effect of image segmentation, this paper puts forward a novel image segmentation method based on firefly algorithm and maximum entropy method. Threshold optimization objective function of maximum entropy method is obtained, and then firefly algorithm is used to solve the objective function and find the optimal segmentation threshold of the image. Image is segmented according to the optimal threshold, and the performance is tested by simulation experiment. The results show that the proposed method can quickly and accurately find the optimal threshold value, and can improve the accuracy of image segmentation and anti-noise ability, so it can better meet the real-time requirements of image segmentation.

Key words: firefly algorithm, maximum entropy, threshold, image segmentation