计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (11): 229-232.

• 信号处理 • 上一篇    下一篇

多传感器集中式增量卡尔曼滤波融合算法

马丽丽,张  曼,陈金广   

  1. 西安工程大学 计算机科学学院,西安 710048
  • 出版日期:2014-06-01 发布日期:2015-04-08

Multi-sensor centralized incremental Kalman filtering fusion algorithm

MA Lili, ZHANG Man, CHEN Jinguang   

  1. School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China
  • Online:2014-06-01 Published:2015-04-08

摘要: 在单个传感器的状态估计系统中,标准的增量卡尔曼滤波方法可以有效消除量测系统误差。对于多传感器情况,标准算法失效。针对该问题,提出了多传感器集中式增量卡尔曼滤波融合算法,即:增量卡尔曼滤波的扩维融合算法和增量卡尔曼滤波的序贯融合算法。在标准增量卡尔曼滤波算法的基础上,结合扩维融合和序贯融合的思想来实现多传感器数据的融合。实验结果表明,当存在量测系统误差时,提出的集中式融合算法与传统的集中式融合算法相比,提高了滤波精度,并且能够成功地消除量测系统误差。

关键词: 多传感器数据融合, 增量卡尔曼滤波, 扩维融合, 序贯融合, 量测系统误差

Abstract: In the state estimation system of single sensor, standard incremental Kalman filter can eliminate measurement system error effectively. For the system of multi-sensor, standard algorithm does not work. To the problem, the paper presents multi-sensor centralized incremental Kalman filtering fusion algorithms, i.e., augmented fusion algorithm with incremental Kalman filter and sequential fusion algorithm with incremental Kalman filter. Based on the standard incremental Kalman filter, multi-sensor data fusion is implemented by using the ideas of augmented fusion and sequential fusion. Experimental results show that the fusion accuracy of the proposed centralized fusion algorithms is better than that of traditional centralized algorithms. Furthermore, the new fusion algorithms can eliminate the measurement system error.

Key words: multi-sensor data fusion, incremental Kalman filter, augmented fusion, sequential fusion, measurement system error