计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (21): 226-229.

• 工程与应用 • 上一篇    下一篇

粒子群与K均值混合聚类的棉花图像分割算法

时  颢,赖惠成,覃锡忠   

  1. 新疆大学 信息科学与工程学院,乌鲁木齐 830046
  • 出版日期:2013-11-01 发布日期:2013-10-30

Image segmentation algorithm of cotton based on PSO and K-means hybrid clustering

SHI Hao, LAI Huicheng, QIN Xizhong   

  1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
  • Online:2013-11-01 Published:2013-10-30

摘要: 棉花分割是采棉机器人视觉系统的关键步骤,在强光照、阴影等复杂的棉田环境下准确有效地分割棉花,有助于确定其在三维空间的位置。针对棉花图片的特点,提出在YCbCr颜色空间下,采用粒子群(PSO)和K均值混合聚类算法,提高了聚类算法的全局搜索能力,根据群体适应度方差来确定K均值聚类算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。通过对棉田环境中拍摄图像的分割实验表明:本方法对在阳光直射及阴影等干扰条件下的棉花图片也能准确分割,效果优于传统PSO和K均值算法。

关键词: 棉花分割, YCbCr颜色空间, K均值算法, 粒子群算法

Abstract: Image segmentation of cotton is the key step of the cotton picker robot vision system. In the complex environment of the cotton fields of the strong light, shadow, etc. accurately and effectively splitting cotton, helps to determine its position in three-dimensional space. In accordance with the characteristics of cotton pictures, a method of Particle Swarm Optimization(PSO) and K-means hybrid clustering in YCbCr color space is proposed. This approach reinforces the exploitation of global optimum of the PSO algorithm. In order to avoid the premature convergence and speed up the convergence, traditional K-means algorithm is used to explore the local search space more efficiently dynamically according to the variation of the particle swarm’s fitness variance. The experiment results show that this method can segment cotton image with the complex background, and is more effective than the traditional PSO and K-means algorithm.

Key words: cotton segmentation, YCbCr color space, K-means algorithm, Particle Swarm Optimization(PSO) algorithm