计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (19): 186-190.

• 图形图像处理 • 上一篇    下一篇

多线索融合和区域划分的粒子滤波跟踪算法

姜  华1,范  勇2   

  1. 1.绵阳市图书馆,四川 绵阳 621000
    2.西南科技大学 计算机科学与技术学院,四川 绵阳 621000
  • 出版日期:2013-10-01 发布日期:2015-04-20

Particle filter tracking by fusing multiple cues and tracking local object properties

JIANG Hua1, FAN Yong2   

  1. 1.Mianyang Library, Mianyang, Sichuan 621000, China
    2.School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
  • Online:2013-10-01 Published:2015-04-20

摘要: 提出一种多线索动态融合和目标区域划分的粒子滤波视觉跟踪算法。在粒子滤波框架基础上,选取颜色、纹理、边缘线索于目标模型中,采用带权重的乘性融合策略自适应计算粒子权重,并实时更新目标模型。为增强在遮挡时的跟踪能力,采用局部目标而非整个运动目标作为粒子目标模型。实验结果表明,改进后的算法比简单的线索融合、传统的粒子滤波模型选取方法更能鲁棒并实时地跟踪目标。

关键词: 粒子滤波, 多线索, 融合策略, 遮挡

Abstract: This paper presents visual cues fusion and tracking local object properties for object tracking in video sequences using particle filtering. The visual cues, color, edge and texture, form the likelihood of the developed particle filter, a method for self-adaptively weighted product fusion strategy is proposed, and the cues real-time is updated. By using local object properties instead of the global ones, the performance of the tracker is greatly improved when the object undergoes partial occlusion. The results show that the proposal is more robust than simple cue fusing or conventional particle filter, and fast enough for real-time applications.

Key words: particle filter, multiple cues, fusion strategy, occlusion