计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (19): 108-111.
章宗标
ZHANG Zongbiao
摘要: 在音频示例检索的研究中,针对示例数据量大而导致计算代价大、检索时间长和噪声鲁棒性差等问题,提出了一种基于主成分分析(PCA)和BP神经网络(BPNN)的示例优选方法。以信号鲁棒性评分为依据构建数据集合,使用主成分分析得到段级特征,消除数据冗余,减少输入变量,最后利用BPNN对保留成分进行建模预测。用PCA-BPNN模型对实验数据进行了验证性测试和分析,结果表明,该方法可以准确而高效地从一段音频中选取鲁棒性好的示例。