计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (18): 73-77.
赵 晖
ZHAO Hui
摘要: 入侵检测数据往往含有大量的冗余、噪音特征及部分连续型属性,为了提高网络入侵检测的效果,利用邻域粗糙集对入侵检测数据集进行属性约简,消除冗余属性及噪声,也避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;使用粒子群算法优化支持向量机的核函数参数和惩罚参数,以避免靠主观选择参数带来精度较低的风险,进一步提高入侵检测的性能。仿真实验结果表明,该算法能有效提高入侵检测的精度,具有较高的泛化性和稳定性。