计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (18): 153-158.

• 图形图像处理 • 上一篇    下一篇

木材彩色图像缺陷分割——基于Gabor滤波的改进C-V彩色模型

仇逊超,王阿川,曹  军   

  1. 东北林业大学 信息与计算机工程学院,哈尔滨 150040
  • 出版日期:2013-09-15 发布日期:2013-09-13

Segmentation for colored image of wood defect by improved C-V colored model of Gabor filter

QIU Xunchao, WANG Achuan, CAO Jun   

  1. Information and Computer Engineering College, Northeast Forestry University, Harbin 150040, China
  • Online:2013-09-15 Published:2013-09-13

摘要: 分析了木材节子缺陷、单板节子的特点,提出了一种基于多通道Gabor滤波的改进C-V彩色模型的木材缺陷识别算法。该算法将彩色图像作为一个整体的图像,保留了图像的彩色信息。该算法利用多通道Gabor滤波器、K-均值聚类算法得到缺陷目标与背景的彩色区分图像;利用改进的彩色C-V模型对新图像进行边缘提取,得到理想的实验结果。与采用基于改进C-V模型与小波变换的灰度图像缺陷识别算法相对比,结果表明该方法可快速、准确地实现对木材节子缺陷彩色图像及单板多节子彩色图像的分割。

关键词: 单板节子彩色图像, 改进的彩色C-V模型, 多通道Gabor滤波器, 多目标分割

Abstract: Through analyzing the features of wood defects and the features of veneer knots, this paper presents an identification algorithm of wood defects, which is based on improved C-V colored model of multi-channel Gabor filters. This algorithm, which protects the colored information of the image, makes the colored image be an integral image. The algorithm applies multi-channel Gabor filters and K-means clustering to getting colored image, which is the discrimination of the defective target and the background. The algorithm applies the improved C-V colored model on the new image to abstracting the new image’s edge. To compare with the identification algorithm of gray image defects, which is based on improved C-V model and wavelet transformation, the results show that this method can segment the colored image of wood defects and the colored image of the multi-object veneer knot fast and accurately.

Key words: colored image of veneer knot, colored extension of C-V model, multi-channel Gabor filters, multi-object segmentation