计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (9): 9-11.

• 博士论坛 • 上一篇    下一篇

一种求解约束优化问题的混合算法

龙 文1,2,梁昔明3,焦建军1,2   

  1. 1.贵州财经学院 贵州省经济系统仿真重点实验室,贵阳 550004
    2.贵州财经学院 数学与统计学院,贵阳 550004
    3.中南大学 信息科学与工程学院,长沙 410083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-03-21 发布日期:2012-04-11

Hybrid algorithm for solving constrained optimization problems

LONG Wen1,2, LIANG Ximing3, JIAO Jianjun1,2   

  1. 1.Guizhou Key Lab of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550004, China
    2.School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550004, China
    3.School of Information Science and Engineering, Central South University, Changsha 410083, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-03-21 Published:2012-04-11

摘要: 提出一种基于修改增广Lagrange函数和PSO的混合算法用于求解约束优化问题。将约束优化问题转化为界约束优化问题,混合算法由两层迭代结构组成,在内层迭代中,利用改进PSO算法求解界约束优化问题得到下一个迭代点。外层迭代主要修正Lagrange乘子和罚参数,检查收敛准则是否满足,重构下次迭代的界约束优化子问题,检查收敛准则是否满足。数值实验结果表明该混合算法的有效性。

关键词: 增广Lagrange函数, 约束优化问题, 粒子群优化

Abstract: A hybrid algorithm based on modified augmented Lagrange function and PSO is proposed for solving constrained optimization problems. The general constrained optimization problem is converted into a bound constrained optimization problem. The basic steps off the proposed hybrid algorithm comprise an outer iteration and an inner iteration. The inner iteration, in which a nonlinear bound constrained minimization sub-problem of the modified augmented Lagrange multiplier, is solved by improved PSO algorithm. The outer iteration is performed to update the Lagrange multipliers and penalty parameters using a first-order update scheme, check for convergence and accordingly reinitiate another bound constrained minimization or declare convergence. The proposed algorithm is tested on 8 well-known benchmark constrained optimization problems, and the results show that it is very suitable and steadier than other algorithms from the literature for different constrained optimization problems.

Key words: augmented Lagrange function, constrained optimization problems, Particle Swarm Optimization