计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (7): 43-47.
张慧斌,王鸿斌,邸东泉
ZHANG Huibin, WANG Hongbin, DI Dongquan
摘要: PSO算法是一种随机搜索的群体智能算法,在求解高维约束优化问题,尤其是在约束条件较多时,PSO算法易陷入局部极值且收敛速度慢。针对上述问题,对PSO算法进行了改进,提出了γ-PSO算法,把PSO算法的随机数由(0,1)扩展到(-1,1),这样加大了粒子飞行速度和飞行方向的多样性,从而使PSO算法具有摆脱局部极值的能力。对γ-PSO算法进行了求解高维约束优化问题的实验,实验结果表明γ-PSO算法能收敛到全局最优值,收敛性能明显优于其他改进的PSO算法和其他优化算法。