计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (7): 20-22.
陈圣兵1,王晓峰1,2
CHEN Shengbing1, WANG Xiaofeng1,2
摘要: 为了对大规模训练样本进行缩减,提出了k近邻向量,给出了一种新的样本差异度的计量方法,证明了该差异度关于噪声识别和类边界距离的几个性质。依据此性质提出了一个高效的SVM训练样本缩减算法,算法首先根据样本差异度的性质剔除噪声样本,然后用类间差异度近似表示类边界距离,结合样本相似性,直接从原始样本空间剔除次要的训练样本。仿真结果表明,减样算法可以有效缩减样本,提高训练效率。