计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (7): 135-138.
斯庆巴拉1,郎德琴2
SIQING Bala1, LANG Deqin2
摘要: 局部线性嵌入算法(LLE)是流形学习中非线性数据降维的重要方法之一。考虑数据点分布大多呈现不均匀性,LLE对近邻点的选取方式将会导致大量的信息丢失。根据其不足,提出一种基于数据点松紧度的局部线性嵌入改进算法——tLLE算法,针对数据点分布不均匀的数据集,tLLE算法能有效地进行维数约简,且具有比LLE更好的降维效果。在人造数据和现实数据上的嵌入以及分类识别结果表明了tLLE算法的有效性。