计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (4): 47-49.

• 研究、探讨 • 上一篇    下一篇

一种用于求解0-1背包问题的动态伸缩算法

拓守恒1,周 涛2   

  1. 1.陕西理工学院 数学与计算机科学学院,陕西 汉中 723000
    2.宁夏医科大学 理学院,银川 750004
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-02-01 发布日期:2012-04-05

New algorithm of solving 0-1 knapsack problem based on dynamic telescopic strategy

TUO Shouheng1, ZHOU Tao2   

  1. 1.School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
    2.School of Science, Ningxia Medical University, Yinchuan 750004, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-02-01 Published:2012-04-05

摘要: 针对0-1背包这个非确定多项式(NP)完全难题,提出一种新的启发式搜索算法来解决0-1背包问题。算法采用多维实数编码,将物品按价值/重量比从大到小排序装包,通过用启发式策略选择交换背包内和背包外物品的位置,采用动态伸缩策略调整背包大小,选取种群中部分优秀解进入下一代继续进行优化。通过5个背包实例进行测试,实验结果表明该算法收敛速度快、求解精度高,并且具有良好的稳定性。

关键词: 0-1背包问题, 实数编码, 启发式搜索算法, 动态伸缩调整策略

Abstract: In order to solve the 0-1 knapsack NP-complete problem, a new heuristic search algorithm is proposed. Algorithm is encoded with the multi-dimensional real-coded. According to the cost per unit weight, it sorts the items in a decreasing order, and in this order the items are put into knapsack until can’t be installed. The algorithm exchanges the item’s positions of the inside and outside knapsack with a heuristic algorithm. Algorithm adjusts the items in the knapsack with a dynamic telescopic strategy and gets a better solution to the future generation. This algorithm is tested on 5 classic experiments, and the result shows that it has some advantages in convergence velocity, solution precision and stabilization.

Key words: 0-1 knapsack problem, real code, heuristic search algorithm, dynamic telescopic strategy