计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (4): 219-221.

• 工程与应用 • 上一篇    下一篇

一种新的不变矩与神经网络玉米病害识别系统

付立思,何荣卜,刘朋维   

  1. 沈阳农业大学 信息与电气工程学院,沈阳 110866
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-02-01 发布日期:2012-04-05

New system about moment invariant and neural network used in maize disease recognition

FU Lisi, HE Rongbu, LIU Pengwei   

  1. School of Information and Electronic Engineering, Shenyang Agriculture University, Shenyang 110866, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-02-01 Published:2012-04-05

摘要: 基于不变矩理论,对玉米病害图像进行二值化、图像归一化处理,提出一种新的、具有较好逼近能力和较强容错能力的RBF-BP神经网络识别系统。利用Hu不变矩特征的平移不变性、比例不变性、旋转不变性和对目标良好的抗干扰性等特性,处理复杂、多变的玉米病害图像,形成不变矩特征矢量样本库。根据Hu不变矩在提取图像特征过程中的可靠性、独立性及数目小的特点和RBF-BP神经网络在识别过程中较好收敛性特点,对玉米病害图像进行特征提取、网络训练和病害特征的识别。仿真实验结果表明RBF-BP神经网络系统的有效性。

关键词: 玉米病害识别, Hu不变矩, 径向基函数-反向传播(RBF-BP)神经网络

Abstract: According to the invariant moment theory, the binary and normalized maize disease images are obtained. A?new?and?better?RBF-BP?neural?network?recognition?system?with?the?approximation?and?the?fault?tolerance?is?proposed. The Hu invariant moment’s advantages that contain translation, proportion, rotation invariant and good anti-jamming are all used to deal with the complex and changeful maize disease images. According to the invariant moment’s reliability, independence, and little number of those characteristics, it can get a better convergence of recognition system to extract the maize image’s features and the training and recognition of RBF-BP neural network. The results of simulation show that the maize disease recognition of RBF-BP neural network has high accuracy and efficiency.

Key words: maize disease recognition, Hu moment invariant, Radial Basis Function-Back Propagation(RBF-BP) neural network