计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (4): 132-134.

• 数据库、信号与信息处理 • 上一篇    下一篇

设计距离为9的q元BCH码的周期分布

廖 谨,陈小松   

  1. 中南大学 数学科学与计算技术学院,长沙 410083
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-02-01 发布日期:2012-04-05

Period distributions of q-ary BCH codes with designed distance 9

LIAO Jin, CHEN Xiaosong   

  1. College of Mathematical Sciences and Computational Technology, Central South University, Changsha 410083, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-02-01 Published:2012-04-05

摘要: 通过对循环陪集的进一步研究和讨论,得到当取q大于7,m大于1时有关循环陪集的一个性质,得到了设计距离为9的q元BCH码的周期分布的计算公式:码的周期分布为q的幂,当码的周期不等于某些特殊值时,幂为码长与周期的最大公因数。当码的周期为特殊值时,幂为n/b-m[8/b],这里n是码的长度,b是由n和码的周期决定的2到8之间的整数,m是q模n的指数。由此计算公式和Mobius反转公式给出了无内周期码字个数的计数结果。

关键词: BCH码, 循环陪集, 周期分布

Abstract: According to research of cyclotomic cosets m, the property of cyclotomic cosets can be concluded when q>7 and m>1. The calculation formulae for period distribution of q-ary BCH codes with designed distance 9 are obtained based on the discussion of cyclotomic cosets and property of cyclotomic polynomials: the period distribution is q’s power. When the period is unequal to some special values, the power is the GCD of code-length and the period. When the period is special value, the power is n/b-m[8/b] , where n is the code-length, b is some number among 2 to 8 related to n and the period, and m is the index of q module n. The nonperiodic cyclic equivalence classes of this kind of codes can be counted due to the period distribution formula found and the Mobuis inverse.

Key words: BCH Codes, cyclotomic cosets, period distribution