计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (4): 118-120.
陈玉明,吴克寿,孙金华
CHEN Yuming, WU Keshou, SUN Jinhua
摘要: 粒计算理论提供了一种新的处理不确定、不完全与不一致知识的有效方法。知识粒度是粒计算理论中度量不确定信息的重要工具之一。已有的异常数据挖掘算法主要针对确定性的异常数据挖掘,采用知识粒度度量不确定性数据,进行异常数据挖掘的研究尚未报道。为此,在引入知识粒度概念的基础上,定义了相对知识粒度及异常度来度量数据之间的异常程度,并提出基于知识粒度的异常数据挖掘算法,该算法可有效进行异常数据的挖掘。实例验证了该算法的有效性。