计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (36): 46-49.
钟海萍,张培爱,张京友,余隆鹰
ZHONG Haiping, ZHANG Pei’ai, ZHANG Jingyou, YU Longying
摘要: 原对偶遗传算法(PDGA)较好地保持了种群的多样性和较强的稳定性,改善了在搜索空间里的搜索能力,使搜索更为有效,但没有利用系统中的反馈信息,导致无为的冗余迭代,求解效率不高。而蚁群算法是通过信息素的累积和更新来收敛于最优路径,具有分布、并行、全局收敛能力,但是搜索初期信息素匮乏,导致算法速度慢。通过将两种算法进行融合,克服两种算法各自的缺陷,优势互补,形成一种全局寻优性能好,稳定性强,效率高的启发式算法,通过仿真计算,表明融合算法的性能优于遗传算法,原对偶遗传算法和蚁群算法。