计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (35): 7-10.

• 博士论坛 • 上一篇    下一篇

单纯形上校正高斯-勒让德求积公式

潘克家1,2,3,汤井田1   

  1. 1.中南大学 有色金属成矿预测教育部重点实验室,地球科学与信息物理学院,长沙 410083
    2.中南大学 数学与统计学院,长沙 410083
    3.高性能计算与随机信息处理教育部重点实验室,长沙 410081
  • 出版日期:2012-12-11 发布日期:2012-12-21

Corrected Gauss-Legendre quadrature formulas over simplexes

PAN Kejia1,2,3, TANG Jingtian1   

  1. 1.Key Lab of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, School of Geosciences and Info-
    Physics, Central South University, Changsha 410083, China
    2.School of Mathematics and Statistics, Central South University, Changsha 410083, China
    3.HPCSIP Key Laboratory, Ministry of Education, Changsha 410081, China
  • Online:2012-12-11 Published:2012-12-21

摘要: 基于高斯-勒让德求积公式余项,给出相应的校正积分公式,提高了至少两阶代数精度。通过坐标变换将三角形、四面体区域变成正方形、立方体积分区域,把校正高斯求积公式推广到高维单纯形上多重积分的计算。通过与二维三角形单元和三维四面体单元上的Hammer求积公式比较发现,校正求积公式的精度非常高,能更快收敛到积分真值,在工程实际中具有较大的应用价值。

关键词: 单纯形, 高斯积分, 有限元, 代数精度, 积分余项

Abstract: Based on the remainder term of Gauss-Legendre quadrature rule, the corresponding correction quadrature formulas, which increase the algebraic accuracy at least two-order, are proposed. Using the coordinate transformation to change the integral over the triangle and tetrahedral into an equivalent integral over the square and cube, the correction formula of Gaussian quadrature rule is extended to calculate the multiple integral over a multi-dimensional simplex. Compared with Hammer quadrature formulae over two-dimensional triangular elements and three-dimensional tetrahedral elements, it is shown that the corrected quadrature formula is of high accuracy, can quickly converge to the exact value of the integral. Thus it is of great use in many engineering applications.

Key words: simplex, Gauss quadrature, finite element, algebraic accuracy, integral remainder