计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (30): 233-238.
• 工程与应用 • 上一篇 下一篇
王晓笛1,肖 伟1,何 灿2
出版日期:
发布日期:
WANG Xiaodi1, XIAO Wei1, HE Can2
Online:
Published:
摘要: 在介绍原始混洗蛙跳算法的基础上,引入遗传算法中的遗传算子,改进原始蛙跳算法的分组方法,提出一种改进的混洗蛙跳算法用于求解多目标优化问题。改进的算法以多目标0-1背包问题为例进行模拟实验,其实验结果表示,与原始的混洗蛙跳算法相比较,改进的蛙跳算法在求解多目标优化问题上具有更好的性能。
关键词: 混洗蛙跳算法, 多目标优化问题, 遗传算子, 分组方法, 多目标0-1背包问题
Abstract: This paper draws genetic operators of GA and improves the method of SFLA group dividing based on introducing SFLA, puts forward an improved SFLA to resolve problem of multi-objective optimization. The improved method takes multi-objective 0-1 knapsack as an example for simulated experiment, which bears out that, compared with original SFLA, the improved SFLA has better performance on resolving improved SFLA problem.
Key words: Shuffle Frog Leaping Algorithm(SFLA), multi-objective optimization, genetic operators, grouping method, multi-objective 0-1 knapsack problem
王晓笛1,肖 伟1,何 灿2. 改进的蛙跳算法在多目标优化问题中的应用[J]. 计算机工程与应用, 2012, 48(30): 233-238.
WANG Xiaodi1, XIAO Wei1, HE Can2. Application of improved Shuffle Frog Leaping Algorithm to resolve multi-objective optimization problem[J]. Computer Engineering and Applications, 2012, 48(30): 233-238.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2012/V48/I30/233