计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (3): 192-194.

• 图形、图像、模式识别 • 上一篇    下一篇

一种新的异常行为检测算法

周宜波,何小海,张生军,卿粼波   

  1. 四川大学 电子信息学院 图像信息研究所,成都 610065
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-01-21 发布日期:2012-01-21

New detection algorithm for abnormal behavior

ZHOU Yibo, HE Xiaohai, ZHANG Shengjun, QING Linbo   

  1. Image Information Institute, College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-01-21 Published:2012-01-21

摘要: 行人异常行为的自动检测与识别是计算机视觉领域的重点和难点,同时也是智能监控系统中研究的热点问题。针对这一问题,提出了一种基于人体形态特征的异常检测算法。利用轮廓信息将目标从视频序列中分割出来,再对分割出来的目标进行轮廓拟合,根据所得到的拟合信息提取文中所定义的形态特征因子,将特征因子经过行为分类器的判定,从而决策出该行为是否异常。实验结果表明该方法实现简单,具有较好的实时性与鲁棒性,可以作为实时监控系统中异常行为检测的有效方法。

关键词: 异常检测, 形态特征, 运动分割, 视频监控

Abstract: Automatic recognition of human behavior is an important but difficult problem in the area of computer vision. In this paper, a novel approach is introduced to handle the problem. Human body is detected using the contour information and the posture features are extracted by the contour fitting. A behavior classifier based on the normal behavior template is established to determine whether a human behavior is normal or not. Experimental results show that this system can run in real-time for the detection of abnormal behaviors with limited information and produce robust results by making full use of posture features information.

Key words: anomaly detection, posture feature, motion segmentation, video surveillance