计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (29): 196-200.

• 图形、图像、模式识别 • 上一篇    下一篇

一种Vague集的模糊支持向量数据描述

沈菊红,黄永东,孔妮娜   

  1. 北方民族大学 信息与计算科学学院,银川 750021
  • 出版日期:2012-10-11 发布日期:2012-10-22

Fuzzy support vector data description based on vague sets

SHEN Juhong, HUANG Yongdong, KONG Nina   

  1. School of Information and Computation Science, Beifang University of Nationalities, Yinchuan 750021, China
  • Online:2012-10-11 Published:2012-10-22

摘要: 针对支持向量数据描述中噪声和孤立点带来的过拟合问题,提出了一种Vague集的支持向量数据描述(VFSVDD),利用模糊k-均值聚类方法生成每个训练样本的真、假隶属度,可以精细地控制训练样本对超球面边界的影响。用UCI机器学习数据集的数据实验验证了VFSVDD的有效性。

关键词: 支持向量数据描述, Vague集, 隶属度, 模糊k-均值聚类

Abstract: To resolve the problem of over-fitted caused by noises and outliers in support vector data description, fuzzy support vector data description based on vague sets(VFSVDD) is proposed in this paper. Fuzzy k-means clustering algorithm is employed for generating the truth-membership and false-membership, how each training example affects the boundary of hypersphere could be controlled. Test data from UCI machine learning repository are employed to evaluate the usefulness of VFSVDD.

Key words: Support Vector Data Description(SVDD), Vague set, membership, fuzzy k-means