摘要: 语音情感信息具有非线性、信息冗余、高维等复杂特点,数据含有大量噪声,传统识别模型难以消除冗余和噪声信息,导致语音情感识别正确率十分低。为了提高语音情感识别正确率,利用小波分析去噪和神经网络的非线性处理能力,提出一种基于过程神经元网络的语音情感智能识别模型。采用小波分析对语音情感信号进行去噪处理,利用主成分分析消除语音情感特征中的冗余信息,采用过程神经元网络对语音情感进行分类识别。仿真结果表明,基于过程神经元网络的识别模型的识别率比K近邻提高了13%,比支持向量机提高了8.75%,该模型是一种有效的语音情感智能识别工具。