计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (23): 168-172.

• 图形、图像、模式识别 • 上一篇    下一篇

压缩域中基于自动标记的图像分割

孙  宁1,肖国强1,杨  恒2,邱开金1   

  1. 1.西南大学 计算机与信息科学学院,重庆 400715
    2.西南大学 电子信息工程学院,重庆 400715
  • 出版日期:2012-08-11 发布日期:2012-08-21

Image segmentation based on automatic markers in compressed domain

SUN Ning1, XIAO Guoqiang1, YANG Heng2, QIU Kaijin1   

  1. 1.College of Computer & Information Science, Southwest University, Chongqing 400715, China
    2.College of Electronics & Information Engineering, Southwest University, Chongqing 400715, China
  • Online:2012-08-11 Published:2012-08-21

摘要: 针对传统像素域中图像分割算法计算复杂的缺陷,提出了一种压缩域中快速图像分割算法。对图像分块,提取离散余弦变换(DCT)系数结合颜色矩作为块特征,利用支持向量机(SVM)实现对压缩域中图像块的自动标记,采用提出的阈值最小生成树(TMST)算法对已标记块进行区域生长,应用形态学相关算法对分割出的图像进行修补。通过Corel图像数据库对提出的方法进行验证,结果表明该方法能够更加快速有效地进行图像分割。

关键词: 压缩域, 自动标记, 阈值最小生成树, 图像分割

Abstract: Due to the defect of image segmentation algorithm computational complexity in traditional pixel domain, this paper proposes a fast method for image segmentation in compressed domain. It segments images into blocks and marks image blocks automatically through Discrete Cosine Transform(DCT) coefficients and color moments in combination with Support Vector Machine(SVM) in compressed domain. It puts forward the Threshold Minimum Spanning Tree(TMST) algorithm to link marked blocks. It modifies and smooths edge of the segmented image according to morphology algorithm. The study validates the proposed method through Corel image database. The result indicates this algorithm is faster and more effective in image segmentation compared to previously proposed segmentation methods.

Key words: compressed domain, automatic markers, Threshold Minimum Spanning Tree(TMST), image segmentation