计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (22): 239-243.
• 工程与应用 • 上一篇 下一篇
蒋德珑,王克文
出版日期:
发布日期:
JIANG Delong, WANG Kewen
Online:
Published:
摘要: 针对算法评价的模糊性,提出一种基于模糊数学理论的算法综合评价模型,并用于状态估计中不良数据检测与辨识算法的综合评估。通过在不同系统配置条件下,对四种常用不良数据检测与辨识算法进行综合评估,比较出其优劣特性,验证了该评估系统的正确性,实现了算法评估中定性分析的定量化,为实际系统算法的选择提供了有效参考。
关键词: 电力系统, 不良数据, 检测与辨识, 算法评价, 模糊综合评价
Abstract: To solve the fuzziness of algorithm evaluation, fuzzy mathematics theory is proposed to evaluate synthetically algorithms of bad-data detection and identification. And then the best algorithm of state estimation will be found for specific power system. In different system configurations, the proposed evaluation system is used to evaluate four algorithms of bad-data detection and identification, and then the characters of the four algorithms can be found. Practical effect proves that the evaluation system is effective and can quantify the qualitative-analysis of algorithm evaluation. It can give effective reference to choose algorithm for actual power system.
Key words: power system, bad data, detection and identification, algorithm evaluation, fuzzy synthetic evaluation
蒋德珑,王克文. 不良数据检测与辨识算法的评估研究[J]. 计算机工程与应用, 2012, 48(22): 239-243.
JIANG Delong, WANG Kewen. Research in evaluation for algorithms of bad-data detection and identification[J]. Computer Engineering and Applications, 2012, 48(22): 239-243.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2012/V48/I22/239