计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (20): 1-5.

• 博士论坛 • 上一篇    下一篇

遗传算法对Powell图像配准方法的改进

李  伟1,何鹏举1,杨  恒2,陈  明1   

  1. 1.西北工业大学 自动化学院 测控技术与仪器工程系,西安 710129
    2.无锡泛太科技有限公司,江苏 无锡 214000
  • 出版日期:2012-07-11 发布日期:2012-07-10

Genetic algorithm improvement for Powell image registration

LI Wei1, HE Pengju1, YANG Heng2, CHEN Ming1   

  1. 1.Department of Measurement and Instrument Engineering, School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
    2.Wuxi Fantai Technology Co., Ltd., Wuxi, Jiangsu 214000, China
  • Online:2012-07-11 Published:2012-07-10

摘要: 针对Powell算法在搜索过程中具有初始值依赖和容易陷入局部极值的问题,提出了使用遗传算法改进Powell算法在图像配准中的应用。利用图像的归一化互信息作为遗传算法的适应度,全局、并行搜索图像配准参数作为Powell算法的初始值,再使用Powell算法局部逼近近似最优解。实验结果证明,改进后的Powell算法能有效地减少图像配准的时间,提高配准的精度,精度能达到亚像素级。

关键词: Powell算法, 归一化互信息, 遗传算法

Abstract: Aiming at the Powell algorithm dependent on the initial value and easy to fall into the local extremum, genetic algorithm is applied to improve the Powell algorithm in image registration. Using normalized mutual information as fitness, genetic algorithm searches for image registration parameters in parallel and global area. Then the Powell algorithm applies the searched parameters as its initial values and approaches for the approximate optimal value in local area. Experimental results show that improved algorithm decreases the registration error, improves the accuracy, and achieves the sub-pixel level in image registration.

Key words: Powell algorithm, normalized mutual information, genetic algorithm