计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (19): 215-219.

• 工程与应用 • 上一篇    下一篇

超磁致伸缩智能构件的位移控制系统设计与仿真

隋晓梅1,张昔平1,赵章荣2   

  1. 1.华北科技学院 电子信息工程系,河北 三河 065201
    2.国家林业局 北京林业机械研究所,北京 100029
  • 出版日期:2012-07-01 发布日期:2012-06-27

Displacement control system design and simulation of giant magnetostrictive smart component

SUI Xiaomei1, ZHANG Xiping1, ZHAO Zhangrong2   

  1. 1.Dept. of Electronic Information Engineering, North China Institute of Science and Technology, Sanhe, Hebei 065201, China
    2.Beijing Forestry Machinery Research Institute, State Forestry Administration, Beijing 100029, China
  • Online:2012-07-01 Published:2012-06-27

摘要: 由于超磁致伸缩材料(GMM)内在的迟滞特性会引起智能构件的定位误差,并且其迟滞现象具有输入和输出一对多,输出随输入频率变化的特点,提出一种基于神经网络实现GMM智能构件动态迟滞建模方法。通过所建立神经网络实现GMM 智能构件逆迟滞模型,结合PD反馈控制器,实现智能构件的实时精密位移控制。在Matlab平台上进行仿真,结果表明所建立控制策略能消除GMM智能构件迟滞非线性的影响,实现了GMM智能构件的精密位移控制目的。

关键词: 超磁致伸缩, 智能构件, 神经网络, 前馈补偿, 迟滞非线性

Abstract: Because the problem of machining non-circle pin-hole, a giant magnetostrictive smart component is proposed. The intrinsic hysteresis observed in giant magnetostrictive material has impaired the motion accuracy. The GMM(Giant Magnetostrictive Material) smart component hysteresis has the nature that its relationship between output and input of smart component is one-to-two mapping and its output varies from the different frequency input. A new kind of architecture of neural network is proposed to approximate the smart components dynamic hysteretic characteristics. The smart component precision control is realized by combining the neural network created inverse model and a Proportional Derivative(PD) feedback controller. Simulation shows that this control strategy can eliminate the hysteretic nonlinear impact and achieve the precision control of the smart component.

Key words: giant magnetostrictive, smart component, neural network, feedforward compensation, hysteresis nonlinear