计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (17): 243-248.
• 工程与应用 • 上一篇
宋剑杰
SONG Jianjie
摘要: 针对污水处理过程中水质参数COD指标难以在线检测的问题,提出一种基于分布式改进BP神经网络和灰色预测的COD指标集成软测量模型。为反映污水处理过程的不同工况,采用满意聚类算法对数据样本进行聚类处理,将数据样本划分为若干个子样本集,利用改进BP神经网络方法分别为每个子样本集建立预测模型,计算当前输入数据与各个聚类中心的欧式距离,将欧式距离较小的部分预测模型的输出进行综合,得到分布式神经网络的COD指标预估值;为反映COD指标的时间相关性,基于COD指标历史数据采用改进灰色预测建模方法计算得到当前时刻COD指标的预估值;采用动态加权方法将获得两个COD指标预估值进行加权集成。仿真实验表明,集成软测量模型具有较好的预测性能,可以满足污水处理过程COD指标实时检测的精度要求。