计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (16): 33-36.

• 研究、探讨 • 上一篇    下一篇

拟Newton法在高阶矩阵中的应用——求解最大特征值及特征向量

何  超,刘西林,李佳珍   

  1. 西北工业大学 管理学院,西安 710129
  • 出版日期:2012-06-01 发布日期:2012-06-01

Quasi-Newton methods for solving maximum eigenvalue and its corresponding eigenvector of high order matrix

HE Chao, LIU Xilin, LI Jiazhen   

  1. Department of Management, Northwestern Polytechnical University, Xi’an 710129, China
  • Online:2012-06-01 Published:2012-06-01

摘要: 将求解高阶矩阵的最大特征值及其对应的特征向量问题转化为高阶非线性方程组的求解问题。在此基础上,提出了求解矩阵最大特征值及其对应特征向量的拟Newton法,给出求解矩阵最大特征值及其单位化向量重新整理后的Broyden方法公式、BFS方法公式、DFP方法公式及其对应的Broyden算法,BFS算法,DFP算法。以层次分析法中高阶判断矩阵为例验证了该方法的可行性,说明了该方法相对收敛速度快的优势。

关键词: 矩阵, 非线性方程组, 最大特征值, 特征向量, 拟Newton法

Abstract: This paper is aimed to solve the maximum eigenvalue of high order matrix and its corresponding eigenvector through the method which transfers the equations into a higher order nonlinear equations. At the same time, this paper puts forward the Quasi-Newton method which can solve the maximum eigenvalue and its corresponding eigenvector, the rearranging formula and algorithm of Broyden methods are given to solve the maximum eigenvalue and the corresponding eigenvector; the rearranging formula and algorithm of BFS methods; the rearranging formula and algorithm of DFP methods. The judgment matrix of analytic hierarchy process is used as an example. The results show that the idea is feasible and the convergence speed is higher.

Key words: matrix, nonlinear equations, the maximum eigenvalue, eigenvector, Quasi-Newton methods