计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (16): 133-135.

• 数据库、信号与信息处理 • 上一篇    下一篇

一种基于模糊神经网络的语音端点检测方法

张  梅   

  1. 安徽理工大学 电气工程学院,安徽 淮南 232001
  • 出版日期:2012-06-01 发布日期:2012-06-01

Method for speech endpoints detection based on fuzzy neural network

ZHANG Mei   

  1. Department of Electric Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Online:2012-06-01 Published:2012-06-01

摘要: 为了提高语音端点检测的适应性和鲁棒性,提出一种基于小波分析和模糊神经网络的语音端点检测方法。利用小波变换得到语音信号的特征量,以这些特征量为模糊神经网络的输入进行运算,判断出该信号的类别。介绍了信号特征量的提取以及模糊神经网络的模型、学习算法等。实验表明,与传统的检测方法相比,所提出的方法有较好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。

关键词: 语音端点检测, 小波分析, 模糊神经网络

Abstract: This paper presents a method for speech endpoint detection based on wavelet analysis and fuzzy neural network to improve the adaptability and robustness of speech endpoint detection. Firstly, the characteristic quantities of speech signals are obtained by the wavelet transformation; then the input to fuzzy neural network can be computed based on these characteristic quantities, and finally the signal’s type can be determined. This paper mainly introduces how to obtain the characteristic quantities of signals and how to establish the model and the learning algorithm of fuzzy neural network. The experiments show that this method has better adaptability and robustness and can detect signals with different SNR, compared with the traditional detection methods.

Key words: speech endpoint detection, wavelet analysis, fuzzy neural network