计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (15): 74-77.

• 网络、通信、安全 • 上一篇    下一篇

一种基于改进支持向量机的入侵检测方法研究

易晓梅,吴  鹏,刘丽娟,戴  丹   

  1. 浙江农林大学 信息工程学院,杭州 311300
  • 出版日期:2012-05-21 发布日期:2012-05-30

Intrusion detection method based on improved SVM

YI Xiaomei, WU Peng, LIU Lijuan, DAI Dan   

  1. School of Information Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
  • Online:2012-05-21 Published:2012-05-30

摘要: 提出基于粒子群优化(Particle Swarm Optimization,PSO)算法和支持向量机(Support Vector Machines,SVM)的入侵检测方法,为优化SVM性能,使用PSO的全局搜索特性寻找SVM的最优参数[C]和[σ];为避免PSO算法陷入局部最优,引入变异操作,找到最优参数组合后进行基于PSO_SVM入侵检测算法的训练和检测,解决了入侵检测系统准确度难题。仿真实验表明该方法的检测率为92.8%,误报率为6.911 9%,漏报率为9.708 7%,对KDDCUP竞赛的最佳结果有一定程度的提高,实验结果验证了该算法的有效性和可行性。

关键词: 入侵检测, 支持向量机, 粒子群算法, 网络安全

Abstract: An intrusion detection method based on SVM combined with PSO is proposed. The global search characteristic of PSO is used to search for the best SVM’s parameter:[C]and[σ], and mutation operation is introduced in PSO in order to obtain?globally optimal solutions. After finding the optimal [C]and[σ], training and testing operation of intrusion detection system based on PSO_SVM are performed. It has high real-time and accuracy. The simulation results show that the detection rate is 92.8%, false alarm is 6.9119%and losing alarm is 9.7087%. It verifies the effectiveness and feasibility of the proposed algorithm.

Key words: intrusion detection, support vector machines, particle swarm optimization, network security