计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (14): 60-62.

• 研究、探讨 • 上一篇    下一篇

逻辑系统中的拟对偶性与拟排中律

孙丽华,张兴芳,李友雨   

  1. 聊城大学 数学科学学院,山东 聊城 252059
  • 出版日期:2012-05-11 发布日期:2012-05-14

Pseudo duality and pseudo law of excluded middle in logic systems

SUN Lihua, ZHANG Xingfang, LI Youyu   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
  • Online:2012-05-11 Published:2012-05-14

摘要: 在经典逻辑和t-模基础逻辑中提出了排中律与拟排中律的新概念,说明经典逻辑(带对偶非的MTL)满足排中律(拟排中律),证明了[Godel]模糊逻辑(Lukasiewicz(简称Luk)模糊逻辑)关于最小算子[∧]与最大算子(关于t-模与t-余模对补算子c)既不满足拟对偶性也不满足拟排中律,检验了Luk模糊逻辑关于Luk t-模与Luk t-余模对[?]算子满足拟对偶性和排中律。

关键词: T-模逻辑, 析取范式, 拟对偶性, 拟排中律

Abstract: It presents the new concepts of the law of excluded middle and the pseudo law of excluded middle, and shows that classical logic(MTL with involutive negation) also holds the law of excluded middle(the pseudo law of excluded middle), and proves that [Godel] fuzzy logic(Lukasiewicz(short for Luk) fuzzy logic) on minimum operator and maximum operator(on Lukasiewicz t-norm and Lukasiewicz t-conorm for reverse operator c) doesn’t hold pseudo duality and the pseudo law of excluded middle, and Luk fuzzy logic on Luk t-norm and Luk t-conorm for operator [?] holds pseudo duality and the law of excluded middle.

Key words: T-norm logic, dual disjunctive normal form, pseudo duality, pseudo law of excluded middle