计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (1): 33-35.
胡振宇1,2,林士敏3
HU Zhenyu1,2, LIN Shimin3
摘要: 提出了贝叶斯学习中先验分布选取的一个新技术。该技术将若干个可能的先验进行加权平均,形成一个以权重为参数的线性联合先验,并通过选取权重参数得到一个最合适先验的一个近似。证明了线性联合先验的似然与其组合参数的似然的等价性,并提出了用极大似然或矩估计的方法来确定权重参数的值,从而得到一个最合适的线性联合先验。提出的线性联合先验及确定方法,使得可以利用样本数据对已知先验进行校正,导出未被发现的更合理的先验,从而使贝叶斯学习更为有效。