计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 79-82.

• 网络、通信、安全 • 上一篇    下一篇

流形学习及维数约简在数据隐私保护中的应用

向婷婷1,罗运纶2,王学松1   

  1. 1.北京师范大学 信息科学与技术学院,北京 100875
    2.北京师范大学珠海分校 信息技术学院,广东 珠海 519085
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Application of manifold learning and nonlinear dimensionality reduction in private preserving

XIANG Tingting1,LUO Yunlun2,WANG Xuesong1   

  1. 1.Department of Information Technology,Beijing Normal University,Beijing 100875,China
    2.Department of Information Technology,Beijing Normal University Zhuhai Campus,Zhuhai,Guangdong 519085,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 采用流形学习及维数约简方法可以有效保护敏感数据。针对交通事故黑点的敏感数据挖掘中隐私保护问题,提出了综合应用等距变换和微分流形两种算法来提高原始数据保密程度的方法,采用基于旋转的等距变换扰乱数据,用Laplacian Eigenmap对高维数据进行非线性降维,在保留数据内在几何结构的同时,进一步扰乱数据。该方法有效地应用于交通事故黑点数据隐私保护中,同时降低了原始数据的维数,便于后续的数据挖掘与分析。

关键词: 隐私保护, 微分流形, 等距变换, 拉普拉斯特征映射

Abstract: To deal with the privacy preserving problem during data mining for sensitive black points in traffic accidents,this paper presents a new method,which is based on the isometric transformation and the differential manifold,to improve the privacy preserving level of the original data.It disturbs the data by doing isometric transformation based on rotation.The nonlinear dimensionality reduction is done to high-dimensional data with Laplacian Eigenmap to further disturb the data,while preserving the inner structure of the data at the same time.This method is effectively applied to the privacy preserving problem during data mining for sensitive black points in traffic accidents,while reducing the dimensionality of the original data for later data mining and data analyzing.

Key words: privacy preserving, differentiable manifold, isometric transformation, Laplacian eigenmap