计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 33-35.

• 研究、探讨 • 上一篇    下一篇

经验分布函数概率模型的分布估计算法

张建华1,2,曾建潮3   

  1. 1.兰州理工大学 电气工程与信息工程学院,兰州 730050
    2.中北大学 电子与计算机科学技术学院,太原 030051
    3.太原科技大学 复杂系统与智能计算实验室,太原 030024
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Estimation of distribution algorithms using empirical distribution function as probability model

ZHANG Jianhua1,2,ZENG Jianchao3   

  1. 1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
    2.School of Electronics and Computer Science and Technology,North University of China,Taiyuan 030051,China
    3.Complex System and Computational Intelligence Laboratory,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 连续域分布估计算法普遍采用高斯概率模型,假设变量服从高斯分布。该假设并不具有普遍意义。提出一个任意分布的连续多变量耦合分布估计算法,利用经验分布函数从样本估计分布,采样产生新的个体。描述经验分布函数和逆变换法采样,讨论用样本构造经验分布函数并采样的基本思想,给出一次采样算法及完整的分布估计算法,通过典型函数的仿真实验,说明方法的正确性和有效性。

关键词: 分布估计算法, 经验分布函数, 逆变换法

Abstract: Estimation of distribution algorithms in continuous domains is based on such assumption that the variables subject to Gauss distribution.But it does not apply to everywhere.Estimation of distribution algorithms based on empirical distribution function is presented.The distribution is estimated with empirical distribution function directly.New individuals are sampled from the decided distribution for next generation.When the ideas of empirical distribution function and inverse transformation sampling are given,this paper describes the sampling algorithm and the whole estimation of distribution algorithm in order.The experimental results indicate the validity of the algorithm.

Key words: estimation of distribution algorithms, empirical distribution function, inverse transformation sampling