计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 27-29.

• 研究、探讨 • 上一篇    下一篇

结合SA算法的快速微粒群优化算法

林令娟1,刘希玉2   

  1. 1.山东师范大学 信息科学与工程学院,济南 250014
    2.山东师范大学 管理与经济学院,济南 250014
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Rapid partical swarm optimization combined simulated annealing algorithm

LIN Lingjuan1,LIU Xiyu2   

  1. 1.School of Information Science and Engineering,Shandong Normal University,Jinan 250014,China
    2.School of Manangement and Economics,Shandong Normal University,Jinan 250014,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 理论上已经证明PSO算法用所有微粒的当前位置与全体最好位置相同时算法停止作为收敛准则是有缺陷的,不能保证全局收敛。而已经证明模拟退火算法依概率1收敛于全局最优解集,因此可将模拟退火算法作为PSO算法的收敛判据。将模拟退伙算法和微利群优化算法结合起来,保证PSO算法的全局收敛性,提高了收敛的速度和效率。实验结果证明了其有效性。

关键词: 微粒群优化算法, 全局收敛, 协同搜索, 模拟退火算法

Abstract: Theory has proved that the convergence criterion of the algorithms ceasing is flawed when using the current location as the best location of all particles,and the global convergence is not guaranteed.Simulated annealing algorithm has been proven to be a global optimal solution set under the probability of 1,so the simulated annealing algorithm can be used as the convergence criterion of PSO algorithm.The paper combines the simulated annealing algorithm with the particle swarm optimization algorithm to ensure the global convergence of the PSO algorithm and improve the convergence speed and efficiency.Experimental results show its effectiveness.

Key words: partical swarm optimization, global convergence, cooperative search, simulated annealing algorithm