计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 25-26.

• 研究、探讨 • 上一篇    下一篇

四种分类方法性能比较

奉国和   

  1. 华南师范大学 经济管理学院信息管理系,广州 510006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Comparing performance of four classification algorithms

FENG Guohe   

  1. School of Economy & Manangement,South China Normal University,Guangzhou 510006,China

  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 对RBF神经网络、支持向量机、贝叶斯及K邻近等四种分类方法进行实验比较,依据分类正确率判别其泛化能力,为实际应用提供借鉴。

关键词: 分类, 支持向量机, 神经网络, 贝叶斯, K邻近(KNN)

Abstract: Four well-known learning algorithms of RBF,neural network,support vector machines,Bayesian and K-nearest neighbor are tested on benchmark.The algorithms are compared on correct classification rate and the results are used for reference.

Key words: classification, support vector machines, neural network, Bayesian, K nearest neighbor