计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (8): 11-13.

• 博士论坛 • 上一篇    下一篇

Hilbert-Huang变换的鼾音信号谱分析

张引红,李全禄   

  1. 陕西师范大学 物理学与信息技术学院,西安 710062
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-03-11 发布日期:2011-03-11

Snoring signal spectrum analysis based on Hilbert-Huang transform

ZHANG Yinhong,LI Quanlu   

  1. College of Physics and Information Technology,Shaanxi Normal University,Xi’an 710062,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-03-11 Published:2011-03-11

摘要: 在分析Hilbert-Huang 变换算法的基础上,利用此变换对打鼾者的鼾音信号进行了分析。通过经验模态分解把鼾音信号分解为一系列固有模态函数,并分析了各固有模态的频率特征,对各模态的生物学意义进行了描述。对固有模态函数进行了Hilbert变换,建立了鼾音信号的Hilbert谱和边际谱。结果表明Hilbert比小波变换所建立的时频分布具有更好的时频分辨率,解决了时间分辨率和频率分辨率互相影响的问题;从实际看边际谱比傅里叶谱有更准确的物理意义。Hilbert 谱和边际谱为脉搏信号的特征提取和模式识别提供了可靠的依据。

关键词: 希尔伯特-黄(Hilbert-Huang)变换, 鼾音, 时频分布, 信号分析

Abstract: Based on Hilbert-Huang Transform(HHT),the snore signal is analyzed.A serial of Intrinsic Mode Functions(IMF) are obtained by Empirical Mode Decomposition(EMD).The frequency of each IMF is analyzed and meaning of the biology is described.The Hilbert spectrum and the marginal spectrum of snore signal are established by HHT.The results show that Hilbert spectrum has higher time-frequency resolution than the time-frequency distribution established by wavelet transform and the interaction of the time resolution and the frequency resolution is solved,besides the marginal spectrum has more precise physical meaning than Fourier spectrum.So,HHT provides reliable basis for the feature extraction and pattern recognition of snore signals.

Key words: Hilbert-huang transform, snore, time-frequency distribution, signal analysis