计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (35): 45-47.

• 研究、探讨 • 上一篇    下一篇

一种基于改进遗传规划的泛函网络结构逼近模型

杜燕连,周永权   

  1. 广西民族大学 数学与计算机科学学院,南宁 530006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2011-12-11 发布日期:2011-12-11

Structure approximation of functional network based on improved genetic programming

DU Yanlian,ZHOU Yongquan   

  1. School of Mathematics and Computer Science,Guangxi University for Nationalities,Nanning 530006,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2011-12-11 Published:2011-12-11

摘要: 基于泛函网络的结构特点和遗传规划的全局搜索能力,提出了广义基函数概念,通过改进遗传规划的编码方式对广义基函数进行学习,用最小二乘法设计适应度函数,从而确定泛函网络的最佳逼近结构模型。最后,4个数值仿真实例表明,该方法是有效可行的,具有较强的泛化特性。

关键词: 泛函网络, 遗传规划, 广义基函数, 最小二乘法

Abstract: The concept of generalized function is put forward based on the structure characteristics of functional network and the global search ability of genetic programming,the generalized function is studied through the improved genetic programming encoding,the fitness function is designed using least-square method,and functional network structure model of the optimal approximation is gotten.Finally,four numerical simulation examples indicate that this method is effective and feasible,and has strong generalization.

Key words: functional networks, genetic programming, generalized basis function, least square method