计算机工程与应用 ›› 2011, Vol. 47 ›› Issue (35): 196-198.
张 伟1,曾 立2,檀中强1
ZHANG Wei1,ZENG Li2,TAN Zhongqiang1
摘要: 基于SOFM神经网络构建的三角形网格模型可以实现测量点云压缩后的Delaunay三角逼近剖分,但该模型存在边缘误差。为减小三角形网格的边缘误差,改进了三角形网格模型的训练模式,提出了3步训练模式。第1步采用整个测量点云,对三角形网格模型中的所有神经元进行整体训练;第2步采用测量点云中的边界点集,对三角形网格模型中的网格边界神经元进行训练;第3步采用边界点集中的角点点集,对与边界角点匹配最佳的网格边界神经元进行训练。算例表明,应用该训练模式,可以有效减小三角形网格的边缘误差,三角形网格逼近散乱点云的逼近精度得到提高并覆盖散乱点云整体分布范围。